USB Type-C

From Wikipedia, the free encyclopedia.

USB Type-C, mean USB C, is a 24-pin USB connector system with a rotationally symmetrical connector.

The USB Type-C Specification 1.0 was published by the USB Implementers Forum (USB-IF) and was finalized in August 2014.[3] It was developed at roughly the same time as the USB 3.1 specification. In July 2016, it was adopted by the IEC as “IEC 62680-1-3”

A device with a Type-C connector does not necessarily implement USB, USB Power Delivery, or any Alternate Mode: the Type-C connector is common to several technologies while mandating only a few of them.

USB 3.2, released in September 2017, replaces the USB 3.1 standard. It preserves existing USB 3.1 SuperSpeed and SuperSpeed+ data modes and introduces two new SuperSpeed+ transfer modes over the USB-C connector using two-lane operation, with data rates of 10 and 20 Gbit/s (1 and ~2.4 GB/s).

USB4, released in 2019, is the first USB transfer protocol standard that is only available via USB-C.

image

The 24-pin double-sided connector is slightly larger than the micro-B connector, with a USB-C port measuring 8.4 millimetres (0.33 in) by 2.6 millimetres (0.10 in). Two kinds (genders) of connectors exist, female (receptacle) and male (plug).

Plugs are found on cables and adapters. Receptacles are found on devices and adapters.

USB 3.1 cables are considered full-featured USB-C cables. They are electronically marked cables that contain a chip with an ID function based on the configuration channel and vendor-defined messages (VDM) from the USB Power Delivery 2.0 specification. Cable length should be ≤2 m for Gen 1 or ≤1 m for Gen 2. The electronic ID chip provides information about product/vendor, cable connectors, USB signalling protocol (2.0, Gen 1, Gen 2), passive/active construction, use of VCONN power, available VBUS current, latency, RX/TX directionality, SOP controller mode, and hardware/firmware version.

USB-C cables that do not have shielded SuperSpeed pairs, sideband use pins, or additional wires for power lines can have increased cable length, up to 4 m. These USB-C cables only support 2.0 speeds and do not support alternate modes.

All USB-C cables must be able to carry a minimum of 3 A current (at 20 V, 60 W) but can also carry high-power 5 A current (at 20 V, 100 W). USB-C to USB-C cables supporting 5A current must contain e-marker chips (also marketed as E-Mark chips) programmed to identify the cable and its current capabilities. USB Charging ports should also be clearly marked with capable power wattage.

Full-featured USB-C cables that implement USB 3.1 Gen 2 can handle up to 10 Gbit/s data rate at full duplex. They are marked with a SuperSpeed+ (SuperSpeed 10 Gbit/s) logo. There are also cables which can carry only USB 2.0 with up to 480 Mbit/s data rate. There are USB-IF certification programs available for USB-C products and end users are recommended to use USB-IF certified cables.

USB Type-C Cable and Connector Specification

image

USB-C receptacle pinout end-on view

Plugs: The male connector (plug) has only one high-speed differential pair, and one of the CC pins is replaced by VCONN(CC2), to power electronics in the cable, and the other is used to actually carry the Configuration Channel signals. These signals are used to determine the orientation of the cable, as well as to carry USB Power Delivery communications.

USB-C plug pinout end-on view

Cables:

image

Alternate Mode partner specifications

As of 2018, five system-defined Alternate Mode partner specifications exist. Additionally, vendors may support proprietary modes for use in dock solutions. Alternate Modes are optional; USB-C features and devices are not required to support any specific Alternate Mode. The USB Implementers Forum is working with its Alternate Mode partners to make sure that ports are properly labelled with respective logos.

image

Alternate Mode protocol support matrix for USB-C cables and adaptersimage

Leave a Reply

Your email address will not be published. Required fields are marked *